skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lazzeri, Drew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hydrologists and water managers increasingly face challenges associated with extreme climatic events. At the same time, historic datasets for modeling contemporary and future hydrologic conditions are increasingly inadequate. Machine learning is one promising technological tool for navigating the challenges of understanding and managing contemporary hydrological systems. However, in addition to the technical challenges associated with effectively leveraging ML for understanding subsurface hydrological processes, practitioner skepticism and hesitancy surrounding ML presents a significant barrier to adoption of ML technologies among practitioners. In this paper, we discuss an educational application we have developed—Sandtank-ML—to be used as a training and educational tool aimed at building user confidence and supporting adoption of ML technologies among water managers. We argue that supporting the adoption of ML methods and technologies for subsurface hydrological investigations and management requires not only the development of robust technologic tools and approaches, but educational strategies and tools capable of building confidence among diverse users. 
    more » « less